Что такое турбированный двигатель
Avtorazbor61.ru

Автомобильный портал

Что такое турбированный двигатель

Что такое турбодвигатели, и надежны ли они [Пост для новичков]

Простыми словами: почему турбомоторы все чаще встречаются на автомобилях?

По мере того, как правительства самых автомобилизированных стран мира продолжают бороться за экономию топлива и регулирование выбросов, двигатели с турбонаддувом среднего и малого объема становятся все более распространенными.

Считается, что компактные двигатели с турбонаддувом могут сочетать в себе превосходную топливную экономичность при аккуратном использовании в городском потоке (по крайней мере, на бумаге) и при этом иметь высокую пиковую мощность (как минимум на бумаге) на максимальных оборотах. По этой причине автопроизводители повсеместно начали использовать этот тип моторов для того, чтобы их продукция могла соответствовать все более строгим стандартам по экологичности выбросов и, как прежде, давать клиентам тот же уровень мощности, каким он был раньше, а иногда предлагать даже более высокий.

В этой статье мы кратко опишем, как работает двигатель с турбонаддувом (иногда их также называют «двигатели с принудительной индукцией»), и ответим на распространенные вопросы потребителей, которые рассматривают как вариант покупку турбированных среднеобъемников, но ни разу с ними не сталкивались.

Но прежде сделаем небольшое отступление: в наши дни турбированные двигатели можно обнаружить на всех типах транспортных средств, включая спорткары, кроссоверы, внедорожники и даже пикапы, поэтому мы надеемся, что этот пост вооружит вас полезными базовыми знаниями, которые вам понадобятся при выборе нового или подержанного современного автомобиля.

Что такое турбодвигатель, и как работает турбированный мотор?

Если говорить простыми словами, работа турбины заключается в следующем: турбокомпрессор втягивает воздух, сжимает его, а затем подает сжатый воздух во впускной коллектор вашего двигателя. Этот плотный, насыщенный кислородом воздух под давлением затем резко поступает в камеру сгорания в тот момент, когда поршень совершает движение вниз. С большим количеством кислорода, поступающего в двигатель на более высокой скорости, можно сжечь больше топлива за один и тот же временной промежуток. А сжигая больше топлива, вы получаете больше энергии. Мощность растет, автомобиль становится более восприимчивым к нажатию на педаль газа.

Однако это только одна часть процесса наддува. Второй, не менее важный этап инициируется после завершения цикла сгорания. Раскаленные отработавшие газы на большой скорости устремляются по выпускному коллектору, выходят из камеры сгорания через выпускное отверстие. По мере продвижения на определенном отрезке выпускного канала (у разных автомобилей это расстояние разное, но по общему правилу чем оно меньше, тем больше мощности отдается турбине) газы встречаются с лопастями турбонагнетателя и начинают вращать колесо турбины за счет очень большого давления и, конечно же, скорости потока.

Вращающееся колесо компрессора втягивает новую прохладную часть атмосферного воздуха с противоположной стороны турбины при помощи аналогичных лопастей, начиная процесс сначала.

Это не сложный процесс, но новичку его, может быть, будет трудно представить, поэтому взгляните на эту диаграмму:

Все работает на первый взгляд, как часы, но с процессом доставки есть одна небольшая проблема: прохладный атмосферный воздух во время сжатия нагревается, тепло отнимает мощность вашего двигателя.

Инженеры давно решили и эту нестыковку. Сжатый воздух перед подачей во впускной коллектор должен быть охлажден. Для того чтобы сделать это, воздух под давлением на своем пути к впускному коллектору пройдет через теплообменный аппарат, иногда вызываемый «intercooler».

Принцип работы аппарата идентичен тому, что происходит в жидкостном радиаторе, с тем лишь отличием, что воздух охлаждает воздух (самая распространенная схема «воздухо-воздушная»), поскольку, чтобы охладить разогретый сжатый воздух, используется внешний воздушный поток, набегающий на автомобиль по мере того, как вы движетесь вниз по дороге. Также существуют промежуточные охладители наддувочного воздуха, работающие на воде, в таком радиаторе используется холодная вода для охлаждения воздушной массы до нужной температуры.

Плюсы и минусы турбированного двигателя

Теперь, когда новички познакомились с основами работы турбины (ее также называют «улиткой» за визуальное сходство входной части турбины с панцирем моллюска), можно приступать к рассмотрению двух основных преимуществ турбированного двигателя – большая выходная мощность и повышенная топливная эффективность.

Поскольку турбонагнетатель позволяет небольшому двигателю производить больше мощности, разработчики могут использовать силовые агрегаты меньшего объема.

Меньший по объему двигатель, как правило, потребляет меньше топлива, чем более объемный мотор (данный постулат сейчас активно подвергается сомнениям, особенно ввиду множественных скандалов, связанных с занижением экономичности и экологичности), что способствует некоторой экономии топлива на определенных режимах работы агрегата (обычно это неспешная работа мотора на низких оборотах в городских условиях).

Двигатели с турбинами, нагнетая больше обогащенного кислородом воздуха внутрь цилиндров, улучшают сгораемость горючей смеси, уменьшая объем количества выбрасываемых вредных отходов. По этим причинам двигатель с турбонаддувом может быть более эффективным, чем атмосферный двигатель (без установленной турбины) при аккуратном движении.

Однако эффективность и экологичность турбированного двигателя может быстро упасть, если вы начнете агрессивно ездить. Почему это неминуемо произойдет? И здесь все достаточно банально. Для того чтобы двигатель работал правильно и не выходил из строя, он должен достичь надлежащего соотношения топливовоздушной смеси, миксующейся в камере сгорания (как правило, это происходит в камере сгорания). Турбина же будет доставлять больше кислорода в двигатель, особенно при условии полного нажатия на педаль газа: «тапок в пол», поэтому, во-первых, двигатель начнет сжигать больше топлива при таком сценарии.

Работа турбонагнетателей также увеличивает давление в двигателе вашего автомобиля. При работе мотора с высоким давлением вы рискуете столкнуться с «предварительным зажиганием» – так называется несанкционированное воспламенение топлива до того момента, как свечи зажигания должны дать искру и воспламенить его. Для проявления этого явления достаточно мощно ускориться на турбированном автомобиле. Давление внутри цилиндров подскочит, что увеличит шансы на преждевременное зажигание топливовоздушной смеси.

Современные двигатели оснащены датчиком детонации и программным обеспечением, которые помогают предотвратить предварительное воспламенение, обнаруживая его и распыляя дополнительное топливо в камеру, способствуя дальнейшему увеличению расхода топлива.

По этой причине многие современные турбированные двигатели также будут рассчитаны на работу на премиальном бензине. Топливо с более высоким октановым числом имеет меньше шансов к детонации, что делает его идеальным для небольших турбомоторов с высокой степенью сжатия.

Вы можете выяснить, какой бензин подходит для вашего автомобиля, в руководстве пользователя. Но если это современный турбированный двигатель, есть хороший шанс, что он использует 95 или 98 бензины.

В то время как многие современные двигатели довольно надежны, турбированные двигатели поставляются с рядом дополнительных компонентов на пути к самому турбокомпрессору: интеркулера и всех трубопроводов, необходимых для доставки сжатого охлажденного воздуха в двигатель. Это может сделать ремонт двигателя или его обслуживание дороже по сравнению с традиционным атмосферным мотором.

В плане надежности все зависит от транспортного средства. Надежнее всего изучить рейтинги надежности и затраты на ремонт приглянувшегося турбированного автомобиля, поскольку эти цифры варьируются от модели к модели. В целом вам больше не нужно беспокоиться о том, что автомобиль с турбонаддувом ненадежен – технология прошла долгий путь с 1980-х годов.

Напомним плюсы и минусы турбированного двигателя:

За:

Больше мощности и крутящего момента от двигателя меньшего объема;

Больше крутящего момента на низких оборотах;

Может обеспечить лучшую топливную экономичность при движении в спокойном режиме

Против:

Экономия топлива «испарится», если ездить агрессивно;

Может потребоваться дорогое топливо премиум-класса (скорее всего, так и будет);

Увеличится стоимость ремонта и обслуживания

Надежны ли турбированные двигатели?

Как мы кратко коснулись выше, двигатели с турбонаддувом сложнее и имеют больше деталей, чем моторы без турбонаддува. В то время как большинство современных двигателей с турбонаддувом довольно надежны, более сложная конструкция может повысить затраты на ремонт, если у вас возникнут проблемы или произойдет столкновение на дороге. Турбина может также увеличить износ некоторых компонентов из-за повышенной нагрузки, что может сократить жизнь двигателя с течением времени. Плюс не стоит забывать, под какими нагрузками трудится сама турбина. Скорости вращения лопаток гигантские, нагрев большой – выйти из строя на 100-150 тыс. км может легко! Плюс многое зависит от смазочных материалов, качества самой турбины, качества топлива и т. д. А стоимость турбокомпрессоров может «кусаться».

По общепринятому правилу чем проще мотор, тем он надежнее. Атмосферный двигатель без турбины проще, значит, и надежнее.

Как я могу определить отказ турбины?

Ниже приведем подробную табличку наиболее распространенных отказов турбин. Чтобы узнать больше, переходите по ссылке выше.

При увеличении скорости слышен свист турбины. Возможно, поврежден вал турбины. Свист вызван из-за металлического трения.

Утечка масла в турбокомпрессоре. Возможно на валу есть сколы (износ). Масло попадает в выхлопную систему.

Возможно, турбине не хватает воздуха для подачи в двигатель. В результате в камере сгорания неправильная смесь топлива и кислорода. В итоге в процессе сгорания топлива образовывается черный дым. Скорее всего, в автомобиле есть утечка, поступаемого в двигатель, воздуха.

Признаки неисправностей турбокомпрессора
Симптом: Проявления: Что необходимо сделать:
Свист турбонагнетателя Замена турбокомпрессора / Ремонт
Синий дым Замена турбокомпрессора / Ремонт
Увеличился расход топлива Повреждение подшипников турбокомпрессора. Линия подачи масла в турбину неисправна или забита. Проверьте маслопроводы турбокомпрессора и при необходимости замените их
Черный дым Проверьте шланги и соединение системы всасывания воздуха. Также проверьте линию подачи сжатого воздуха на герметичность и при необходимости замените поврежденный компонент.
Потеря мощности I Недостаток постоянной мощности. Компрессор может быть поврежден. Например, из-за сломанных лопастей колес, турбина больше не может подавать достаточное количество воздуха в цилиндры. Необходимы новые колеса компрессора колеса. Также необходимо защитить систему подачи воздуха в турбину от попадания инородных вещей.
Потери мощности II Блок VTG загрязнен. В итоге работа лопаток турбины с изменяемой геометрией не эффективна. Например, из-за загрязнения лопаток может не хватать давления выхлопных газов. Разобрать турбину и очистить лопатки, от образования сажи.
Чрезмерное давление наддува Неисправен клапан регулирования давления наддува. Неисправность вакуумного блока регулировки работы клапана. Замена вакуумного блока, очистка или замена клапана выхлопных газов
Шум от турбокомпрессора Обратное давление в выхлопной системе слишком высокое. Повреждение колеса компрессора или колеса турбины. Утечка выхлопных газов. Проверьте выхлопную систему на наличие повреждений. Проверьте компрессор турбины на повреждения. Устраните неисправность с помощью ремонта турбокомпрессора.

Что такое наддув?

Турбонагнетатель и нагнетатель предназначены для достижения одной и той же цели: увеличить мощность двигателя, нагнетая воздух в двигатель вашего автомобиля.

Турбокомпрессор использует отработанные выхлопные газы для вращения колеса компрессора и подачи сжатого воздуха в двигатель. Нагнетатель, однако, прикреплен к коленчатому валу вашего двигателя ремнем. Ремень вращает два «винтовых ротора» внутри нагнетателя, которые сжимают воздух и подают его в двигатель. Воздух подается в цилиндры через отверстие внизу короба нагнетателя. Вы можете увидеть, как это работает, в gif ниже:

Мы надеемся, что эта статья ответила вам на все основные вопросы, которые у вас могли возникнуть относительно двигателей с турбонаддувом. Приятной езды на хороших автомобилях!

Что такое турбонаддув

Такая вот небольшая с виду «улитка» — один из самых действенных способов увеличить мощность двигателя.

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? нас и поджидают проблемы.

Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

А вот так выглядит интеркулер.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

У Mitsubishi Lancer Evolution интеркулер располагается в переднем бампере перед радиатором. А у Subaru Impreza WRX STI — над двигателем.

, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, , температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Турбина с изменяемой геометрией.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».

Чем отличается атмосферный двигатель от турбированного

Начнем с того, что ситуация на современном рынке новых автомобилей заметно поменялась за последние 15-20 лет. Изменения в автоиндустрии коснулись как исполнения, уровня оснащения и решений в плане активной и пассивной безопасности, так и устройства силовых агрегатов. Привычные атмосферные моторы на бензине с тем или иным рабочим объемом, которые раньше фактически являлись показателем класса и престижности авто, сегодня активно вытесняются турбированным двигателем.

В случае с турбомоторами объем двигателя перестал выступать базовой характеристикой, определяющей мощность, крутящий момент, динамику разгона и т.д. В этой статье мы намерены сравнить двигатели с турбиной и атмосферные версии, а также ответить на вопрос, в чем состоит принципиальное отличие атмосферных ДВС от турбированных аналогов. Параллельно будут проанализированы основные преимущества и недостатки моторов с турбонаддувом. Также в итоге будет дана оценка, стоит ли покупать новые и подержанные бензиновые и дизельные машины с турбированным двигателем.

Турбированные двигатели и «атмосферники»: главные отличия

Для начала немного истории и теории. В основу работы любого ДВС положен принцип сгорания топливно-воздушной смеси в закрытой камере. Как известно, чем больше воздуха удается подать в цилиндры, тем больше горючего получается сжечь за один цикл. От количества сгоревшего топлива будет напрямую зависеть количество высвобождающейся энергии, которая толкает поршни. В атмосферных моторах забор воздуха происходит благодаря образованию разрежения во впускном коллекторе.

Другими словами, мотор буквально «засасывает» в себя наружный воздух на такте впуска самостоятельно, а объем поместившегося воздуха зависит от физического объема камеры сгорания. Получается, чем больше рабочий объем двигателя, тем больше воздуха он может уместить в цилиндрах и тем большее количество топлива получится сжечь. В результате мощность атмосферного ДВС и крутящий момент сильно зависят от объема мотора.

Принципиальной особенностью двигателей с нагнетателем является принудительная подача воздуха в цилиндры под определенным давлением. Данное решение позволяет силовому агрегату развивать больше мощности без необходимости физически увеличивать рабочий объем камеры сгорания. Добавим, что системами нагнетания воздуха может быть как турбина (турбокомпрессор), так и механический компрессор.

На практике это выглядит следующим образом. Для получения мощного мотора можно пойти двумя путями:

  • увеличить объем камеры сгорания и/или изготовить двигатель с большим количеством цилиндров;
  • подать в цилиндры воздух под давлением, что исключает необходимость увеличивать камеру сгорания и количество таких камер;

В результате моторы от V6 до V12 с большим рабочим объемом долгое время являлись эталоном производительности. Также не стоит забывать и о надежности, так как конструкция атмосферных двигателей всегда оставалась проверенным временем решением. Параллельно с этим главными минусами мощных атмосферных агрегатов справедливо считается большой вес и повышенный расход топлива, а также токсичность. Получается, на определенном этапе развития двигателестроения увеличение рабочего объема оказалось попросту нецелесообразным.

Теперь о турбомоторах. Еще одним типом агрегатов на фоне популярных «атмосферников» всегда оставались менее распространенные агрегаты с приставкой «турбо», а также компрессорные двигатели. Такие ДВС появились достаточно давно и изначально шли по другому пути развития, получив системы для принудительного нагнетания воздуха в цилиндры двигателя.

Стоит отметить, что значительной популяризации моторов с наддувом и быстрому внедрению подобных агрегатов в широкие массы долгое время препятствовала высокая стоимость автомобилей с нагнетателем. Другими словами, двигатели с наддувом были редким явлением. Объясняется это просто, так как на раннем этапе машины с турбодвигателем, механическим компрессором или одновременной комбинацией сразу двух решений зачастую ставились на дорогостоящие спортивные модели авто.

Немаловажным фактором оказалась и надежность агрегатов данного типа, которые требовали повышенного внимания в процессе обслуживания и уступали по показателям моторесурса атмосферным ДВС. Кстати, сегодня это утверждение также справедливо для двигателей с турбиной, которые конструктивно сложнее компрессорных аналогов и еще дальше ушли от атмосферных версий.

Преимущества и недостатки современного турбомотора

Перед тем, как мы приступим к анализу плюсов и минусов турбодвигателя, хотелось бы еще раз обратить ваше внимание на один нюанс. Как утверждают маркетологи, доля реализуемых новых автомобилей с турбонаддувом сегодня существенно увеличилась.

Более того, многочисленные источники делают акцент на том, что турбодвигатели все больше и больше теснят «атмосферники», автолюбители зачастую выбирают именно «турбо», так как считают атмосферные двигатели безнадежно устаревшим типом ДВС и т.п. Давайте разбираться, так ли хорош турбомотр на самом деле.

Плюсы турбодвигателя

  1. Начнем с явных плюсов. Действительно, турбодвигатель легче по весу, меньше по рабочему объему, но при этом выдает высокую максимальную мощность. Также моторы с турбиной обеспечивают высокий крутящий момент, который доступен на низких оборотах и является стабильным в широком диапазоне. Другими словами, турбомоторы имеют ровную полку крутящего момента, доступную с самых «низов» и до относительно высоких оборотов.
  2. В атмосферном двигателе такой ровной полки нет, так как тяга напрямую зависит от оборотов двигателя. На низки оборотах атмомотор обычно выдает меньший крутящий момент, то есть его нужно раскручивать для получения приемлемой динамики. На высоких оборотах мотор выходит на максимум мощности, но крутящий момент снижается в результате возникающих естественных потерь.
  3. Теперь несколько слов об экономичности турбодвигателей. Такие моторы и правда расходуют меньше топлива по сравнению с атмосферными агрегатами в определенных условиях. Дело в том, что процесс наполнения цилиндров воздухом и топливом полностью контролируется электроникой.

Минусы турбированного ДВС

Итак, с основными плюсами разобрались. Что касается минусов, они также присутствуют. Вполне очевидно, что турбомотор сложнее как в плане электроники и исполнительных устройств, так и в плане реализации самой схемы турбонаддува. Повышенные требования к качеству топлива и моторного масла тоже никуда не делись.

Дело в том, что небольшой по размерам и объему агрегат работает в условиях высоких механических и тепловых нагрузок. Давление наддува и температура в цилиндрах намного выше по сравнению с атмосферными двигателями, что означает ускоренный износ турбомотора.

  1. Очень важным моментом является ресурс самой турбины. Турбонагнетатель повсеместно устанавливается на современные ДВС, окончательно вытеснив механический компрессор. При этом турбина на бензиновом двигателе обычно «ходит» всего около 150 тыс. км, на дизеле этот показатель в среднем составляет до 250 тыс. км. Затем турбокомпрессор нуждается в дорогом ремонте или полной замене.
  2. Что касается известной проблемы в виде «турбоямы» или «турболага», на современных двигателях этот недостаток практически устранен посредством установки турбин с изменяемой геометрией, путем использования технологий «би-турбо» и т.д. Почему практически, а не до конца? Дело в том, что идеальной остроты отклика во время дозирования тяги в процессе дросселирования, которая свойственна атмосферным моторам, все равно нет. Параллельно с этим более сложные системы турбонаддува требуют повышенных затрат, создают определенные затруднения, которые связаны с обслуживанием и ремонтом.

Что в итоге

Помните, в начале статьи мы говорили о том, что доля турбомоторов на рынке в последнее время заметно возросла. Да, это так, но исключительно благодаря турбодизельным агрегатам. Практически любой современный дизельный двигатель сегодня оборудован турбонаддувом. Дело в том, что именно турбина позволяет дизельному мотору обеспечить достойные эксплуатационные характеристики в сочетании с высокой топливной экономичностью. По этой причине турбодизели пользуются огромной популярностью.

Однако, ситуация с турбобензиновыми агрегатами несколько иная. Подавляющее большинство производителей продолжают выпускать модели в сегментах от «бюджет» до «премиум» с простым атмосферным двигателем. Только в отдельных случаях в линейку добавляются турбированные бензиновые версии. Что касается стран СНГ, авто с турбонаддувом на бензине продолжают заметно уступать машинам с атмосферными бензиновыми ДВС по общему количеству на дорогах. Причин для этого много, начиная от низкого спроса в результате высокой начальной стоимости «надувных» бензиновых авто и заканчивая политикой автодилеров. Последние стараются избавить себя от гарантийных обязательств перед потребителем в случае возникновения проблем с более сложной технически турбированной бензиновой машиной.

Другими словами, турбобензиновые версии завозятся намного реже, так как продавцы учитывают низкое качество горючего и недостаточное количество квалифицированных технических специалистов по ремонту и обслуживанию таких авто на территории СНГ. Добавим, что подавляющее большинство турбированных бензиновых автомобилей на отечественных дорогах представлены моделями немецкого концерна WAG (Audi, Volkswagen, Skoda и т.д.).

Если же вы хотите приобрести подержанный турбированный автомобиль, в таком случае нужно более чем основательно подумать. В случае с дизелем будет необходима глубокая диагностика состояние самого ДВС и готовность заменить изношенную турбину. Когда речь заходит о бензиновых версиях, тогда нашим ответом будет практически однозначное «нет». Дело в том, что актуальная ситуация на рынке турбобензиновых автомобилей б/у достаточно сложная.

  1. Всегда помните о небольшом ресурсе турбины. В том случае, если на конкретной модели их установлено сразу две или более, сумма ремонта заметно возрастает.
  2. Обращайте внимание на пробег и предыдущих владельцев. Зачастую турбоавтомобили берут «гонщики» или амбициозная молодежь. Если первые целенаправленно «укатывают» мощную машину, вторые, как правило, попросту не обслуживают такой автомобиль должным образом и достаточно небрежно его эксплуатируют.

В обоих случаях получается целесообразнее продать машину с пробегом 100-150 тыс. км. другому владельцу по бросовой цене, чем ремонтировать или менять высокотехнологичный турбированный двигатель. То же самое вполне справедливо и для турбированных малолитражек, например, с рабочим объемом 1.2 литра. Моторы данного типа и вовсе считаются «одноразовыми», так как имеют относительно небольшой ресурс около 150-200 тыс. км. и плохо поддаются серьезному ремонту.

–>Автозапчасти и СТО –>

Перед покупкой автомобиля каждый из нас предстает перед массой дилемм, необходимо выбирать между производителями, марками и моделями автомобилей, различными комплектациями, и самое главное, между силовыми агрегатами. Распространенный вопрос: “Что лучше, дизель или бензин?”, по популярности может конкурировать разве что с вопросом: “Что лучше выбрать, турбину или атмосферник?”.

Сегодня в нашей рубрике постоянных дилемм мы поднимем актуальный вопрос о том, автомобиль с каким двигателем лучше покупать – атмосферник или турбированный, поговорим о преимуществах и недостатках каждого из них для того чтобы ваш выбор был более простым и правильным.

Прежде всего необходимо уяснить один важный момент, дело в том, что нельзя сказать однозначно, что лучше турбина или атмосферник, и тот и другой имеет свои “плюсы” и “минусы”. Итак, давайте по порядку.

Преимущества и недостатки атмосферного двигателя

Первым делом для тех кто не в курсе я расскажу, что такое атмосферник. Атмосферником принято называть обычный двигатель внутреннего сгорания (ДВС), который использует для образования топливно-воздушной смеси воздух из карбюратора или инжектора (1 часть бензина к 14 частям воздуха). С появлением турбомоторов выбор автомобиля усложнился, поскольку водители начали все больше “соблазняться” более мощными турбированными агрегатами, отдавая им предпочтение перед обычными ДВС. Однако есть также и те, кто все же не решается покупать турбину ввиду отсутствия знаний или опыта эксплуатации этого двигателя.

Атмосферный двигатель: преимущества

К несомненным достоинствам атмосферных двигателей относят:

  • Простоту конструкции, которая отработана на практике в течение многих десятилетий. Ремонт и техническое обслуживание таких силовых агрегатов обходятся владельцу намного дешевле (по сравнению с аналогичными операциями для турбированного мотора).
  • Значительно больший ресурс бесперебойной работы до капитального ремонта. При правильных условиях эксплуатации и надлежащем уходе срок «жизни» у атмосферных двигателей в 2÷4 раза больше, чем у моторов с турбонаддувом: 300000÷400000 км, зачастую, не являются пределом «долголетия» таких двигателей.
  • Меньший расход масла, который в зависимости от стиля езды обычно не превышает 200÷500 мл на 10000 км пробега автомобиля. Это обусловлено отсутствием дополнительных приспособлений, требующих смазки, а также меньшими нагрузками, которые испытывают вращающиеся части мотора при работе.
  • Неприхоливость к качеству используемого масла. Они вполне удовлетворительно работают на полу-синтетических (и даже минеральных) моторных маслах. Однако, не стоит забывать о том, что чем лучше масло, тем дольше срок службы двигателя.
  • Не столь частую, как у турбированных двигателей периодичность замены масла, которую необходимо производить после пробега в 15000÷20000 км.
  • Меньшую требовательность к качеству применяемого топлива. Как правило, многие атмосферные моторы могут вполне удовлетворительно работать и на бензине марки Аи92.
  • Более быстрый прогрев в зимнее время.

Атмосферный двигатель: недостатки

Как и все в этом Мире, атмосферные двигатели не лишены недостатков. К таким можно отнести большой вес двигателя, меньшую мощность по сравнению с турбомотором аналогичного объема, снижение мощности при езде в горной местности или других местах, где воздух разрежен. Кроме всего прочего, атмосферник уступает турбированному двигателю в динамических показателях.

Преимущества и недостатки турбированного двигателя

Турбированный двигатель впервые увидел мир в 905 году, а на “легковушки” турбины стали устанавливать только в середине 20-го века. Принцип двигателя оснащенного турбиной заключается в том, что турбина рационально использует выхлоп автомобиля, посредством которого происходит нагнетание дополнительного воздуха в цилиндры, который способствует лучшему сгоранию топливно-воздушной смеси. Как вы знаете, чем больше воздуха, тем лучше будет гореть, по тому же принципу устроен и турбомотор, турбина под высоким давлением нагнетает воздух в цилиндры, благодаря чему сгорание топливной смеси происходит с большим КПД, в результате двигатель получает больше мощности минимум на 10%.

Турбированный двигатель: преимущества

К плюсам турбированных моторов (по сравнению с атмосферными аналогами) относят:

  • Более высокую мощность (как правило, на 30÷50%) при одинаковом рабочем объеме.
  • Максимальный крутящий момент в широком диапазоне оборотов, что весьма положительно влияет на динамику автомобиля.
  • Меньшие вес и размеры при одинаковой мощности. Турбированный двигатель значительно легче и компактнее атмосферного. Это позволяет наиболее рационально расположить силовой агрегат и снизить общую массу автомобиля, что способствует, в свою очередь, экономии топлива.
  • Быстрый набор рабочих оборотов за счет меньшей массы вращающихся деталей.
  • Высокую экологичность, которая достигается за счет более полного сгорания топлива в цилиндрах двигателя.

Турбированный двигатель: недостатки

Среди недостатков турбированных моторов больше эксплуатационных минусов. Во-первых, двигатель с турбиной более привередлив к качеству топлива и моторного масла. Кроме того, на таких двигателях срок службы смазывающих и фильтрующих элементов гораздо меньше чем у атмосферников, примерно в 1,5-2 раза, это объясняется более сложными условиями работы при высоких температурах. Владельцам турбированных моторов следует более тщательно следить за уровнем и состоянием фильтров и масла, и производить их замену в строгом соответствии с указаниями производителя двигателя. Не менее важно состояние воздушного фильтра, забитый или поврежденный фильтр ухудшает работу компрессора и может стать причиной его неисправности.

К недостаткам турбодвигателя следует также отнести его “прожорливость”. Турбина, по сравнению с атмосферником аналогичного объема, будет “кушать” больше топлива.

Кроме того, турбомотор имеет меньший моторесурс чем атмосферный двигатель. Турбина со временем изнашивается, особенно если владелец не владеет навыками эксплуатации таких двигателей. К примеру, турбомотору после остановки автомобиля необходимо дать немного поработать на холостых, чтобы турбина остыла и только после этого можно глушить двигатель.

Стоимость ремонта турбированного двигателя обойдется намного дороже чем ремонт атмосферника, кроме того желающих выполнить этот ремонт не так уж много, некоторые специалисты вообще отказываются ремонтировать турбомоторы. Те же, кто берется, иногда выполняют ремонт некачественно, в результате двигатель работает с перебоями или со временем турбодвигатель снова выходит из строя.

Как же расход топлива?

Если вы внимательно прочитали о плюсах и минусах обоих моторов (атмосферного и турбированного), то вас удивило то, что мы ничего не рассказали о расходе топлива. На этом вопросе стоит остановиться несколько подробнее. Попробуем разобраться, какой мотор является более экономичным.

Сначала сравним два двигателя с одинаковым объемом (например, 1,4 литра). Атмосферный мотор будет расходовать в среднем около 6÷7 л на 100 км пробега, а трубированному потребуется уже 8÷9 литров. Однако при этом он развивает мощность в 1,5 раза большую, чем атмосферный. Вывод: при одинаковом рабочем объеме «атмосферник» значительно экономичнее (ведь он не только «ест» меньше топлива, но и использует более дешевый бензин), однако значительно уступает турбированному по мощности.

Теперь проведем сравнение расхода топлива у моторов с одинаковой мощностью (например, около 140÷150 лс). Столько «лошадок» под капотом обычно имеет атмосферный мотор объемом 2,0 литра или турбированный двигатель объемом 1,4 литра. В городском цикле расход у обычного двигателя составит около 12÷14 литров на 100 км, у турбированного – все те же 8÷9 литров. Вывод: даже учитывая меньшую стоимость бензина, необходимого для нормальной эксплуатации атмосферного двигателя, мотор с турбо наддувом значительно экономичнее.

Как вы видите, и тот и другой двигатели имеют свои “плюсы” и “минусы”, для того чтобы понять какой двигатель лучше – турбированный или атмосферный, необходимо для себя уяснить приоритетные стороны того или иного агрегата.

Автомобиль с каким двигателем лучше выбрать

Обе разновидности моторов имеют как свои достоинства, так и недостатки. Поэтому нельзя однозначно сказать какой из них лучше. Если вы поклонник агрессивной езды, быстрого старта с места, любите драйв и готовы к значительным затратам на обслуживание, то выбор однозначен – автомобиль с турбированным двигателем. Однако, склоняясь к такому выбору, надо помнить о том, что мотор вашего транспортного средства (а особенно турбина) «проживет» значительно меньше, чем атмосферный аналог. К тому же вы должны быть уверены, что в своем регионе вы без труда сможете приобрести топливо высокого качества, а также специальные синтетические масла.

Если для вашего стиля езды характерны спокойствие, предусмотрительность и осторожность, и к тому же вы практичный и бережливый человек, то излишки мощности турбированного двигателя вам просто не нежны. А вот надежность, простота в обслуживании и долговечность атмосферного мотора, позволят значительно сэкономить затраты на его повседневную эксплуатацию.

Источники: avto-moto-shtuchki.ru, vopros-avto.ru и др.

Не забываем!

Всё ремонтируется, вопрос остается только в выборе СТО. Этот выбор только за Вами!

DenWRX › Блог › ЧТО ТАКОЕ ТУРБИНА И КАК РАБОТАЕТ ТУРБО МОТОР Часть 1.

Основы турбо-наддува. Часть 1.

Основные принципы работы турбо двигателя.

Как известно, мощность двигателя пропорциональна количеству топливо-воздушной смеси попадающей в цилиндры. При прочих равных, двигатель большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощности, чем двигатель меньшего объема. Если нам требуется что бы маленький двигатель выдавал мощности как большой или мы просто хотим что бы большой выдавал еще больше мощности, нашей основной задачей станет поместить больше воздуха в цилиндры этого двигателя. Естественно, мы можем доработать головку блока и установить спортивные распредвалы, уеличив продувку и количество воздуха в цилиндрах на высоких оборотах. Мы даже можем оставить количество воздуха прежним, но поднять степень сжатия нашего мотора и перейти на более высокий октан топлива, тем самым подняв КПД системы. Все эти способы действенны и работают в случае когда требуемое увеличение мощности составляет 10-20%. Но когда нам нужно кардинально изменить мощность мотора — самым эффективным методом будет использование турбокомпрессора.

Каким же образом турбокомпрессор позволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взгянем на приведенную ниже диаграмму:

Рассмотрим основные этапы прохождения воздуха в двигателе с турбокомпрессором:

— воздух проходит через воздушный фильтр (не показан на схеме) и попадает на вход турбокомпрессора (1)
— внутри турбокомпрессора вошедший воздух сжимается и при этом увеличивается количество кислорода в единице объема воздуха. Побочным эффектом любого процесса сжатия воздуха является его нагрев, что несколько снижает его плотность.
— Из турбокомпрессора воздух поступает в интеркулер (3) где охлаждается и в основной мере восстанавливает свою температуру, что кроме увеличения плотности воздуха ведет еще и к меньшей склонности к детонации нашей будущей топливо-воздушной смеси.
— После прохождения интеркулера воздух проходит через дросеель, попадает во впускной коллектор (4) и дальше на такте впуска — в цилиндры нашего двигателя.
Объем цилиндра является фиксированной величиной, обусловленной его диаметром и ходом поршня, но так как теперь он заполняется сжатым турбокомпрессором воздухом, количество кислорода зашедшее в цилиндр становится значительно больше чем в случае с атмосферным мотором. Большее количество кислорода позволяет сжечь большее количество топлива за такт, а сгорание большего количества топлива ведет к увеличению мощности выдаваемой двигателем.
— После того как топливо-воздушная смесь сгорела в цилиндре, она на такте выпуска уходит в выпускной коллекторе (5) где этот поток горячего (500С-1100С) газа попадает в турбину (6)
— Проходя через турбину поток выхлопных газов вращает вал турбины на другой стороне которого находится компрессор и тем самым совершает работу по сжатию очередной порции воздуха. При этом происходит падение давления и температуры выхлопного газа, поскольку часть его энергии ушла на обеспечение работу компрессора через вал турбины.

Ниже приведена схема внутреннего устройства турбокомпрессора:

В зависимоти от конкретного мотора и его компоновки под капотом, турбокомпрессор может иметь дополнительные встроенные элементы, такие как Wastegate и Blow-Off. Рассмотрим их подробнее:

Blow-off
Блоуофф (перепускной клапан) это устройство установленное в воздушной системе между выходом из компрессора и дроссельной заслонкой с целью недопустить выход компрессора на режим surge. В моменты когда дроссель резко закрывается, скорость потока и расход воздуха в системе резко падает, при этом турбина еще некоторое время продолжает вращаться по инерции со скоростью не соответствующей новому упавшему расходу воздуха. Это вызывает циклические скачки давления за компрессором и слышимый характерный звук прорывающегося через компрессор воздуха. Surge со временем приводит к выходу из строя опорных подшипников турбины, в виду значительной наргрузки на них в этих переходных режимах. БлоуОфф использует комбинацию давлений в коллекторе и установленной в нем пружины что бы определить момент закрытия дросселя. В случае резкого закрытия дросселя блоуофф сбрасывает в атмосферу, возникающий в воздушном тракте избыток давления и тем самым спасает турбокомпрессор от повреждения.

Wastegate:
Представляет собой механический клапан устанавленный на турбинной части или на выпускном коллекторе и обеспечивающий контроль за создаваемым турбокомпрессором давлением. Некоторые дизельние моторы используют турбины без вейстгейтов. Тем не менее подавляющее большинство бензиновых моторов обязательно требуют его наличия. Основной задачей вейстгейта является обеспечивать выхлопным газам возможность выхода из системы в обход турбины. Пуская часть газов в обход турбины, мы контролируем количество энергии газов которое уходит через вал на компрессор и тем самым управляем давлением наддува, создаваемое компрессором. Как правило вейстгейт использует давление наддува и давление встроенной пружины что бы контролировать обходной поток выхлопных газов.
Встроенный вейстгейт состоит из заслонки встроенной в турбинный хаузинг (улитку), пневматического актуатора и тяги от актуатора к заслонке.
Внешний гейт представляет собой клапан устанавливаемый на выпускной коллектор до турбины. Преимуществом внешнего гейта является то, что сбрасываемый им обходной поток может быть возвращен в выхлопную систему далеко от выхода из турбины или вообще сброшен в атмосферу на спортивных автомобилях. Все это ведет к улучшению прохождения газов через турбину в виду отсутствия разнонаправленных потоков в компактном объеме турбинного хаузинга.

Водяное и маслянное обеспечение:
Шарикоподшипниковые турбины Garrett требуют значительно меньше масла чем втулочные аналоги. Поэтому установка маслянного рестриктора на входе в турбину крайне рекомендована если давление масла в вашей системе привышает 4 атм. Слив масла должен быть заведен в поддон выше уровня масла. Поскольку слив масла из турбины происходит естественным путем под действием гравитации, крайне важно что бы центральный картридж турбины был ориентирован сливом масла вниз.
Частой причиной выхода из строя турбин является закоксовка маслом в центральном картридже. Быстрая остановка мотора после больших продолжительных нагрузок ведет к теплообмену между турбиной и нагретым выпускным коллектором, что в отсутствии притока свежего масла и поступления холодного воздуха в компрессор ведет к общему перегреву картриджа и закоксовке имеющегося в нем масла.
Для минимизации этого эффекта турбины снабдили водяным охлаждением. Водные шланги обеспечивают эффект сифона снижая температуру в центральном картридже даже после остановки двигателя, когда нет принудительной циркуляции воды. Желательно так же обеспечить минимум неравномерности по вертикали линии подачи воды, а так же несколько развернуть центральный картридж вокруг оси турбины на угол до 25 градусов.

Правильный подбор турбины является ключевым моментом в постройке турбо-мотора и основан на многих вводных данных. Самым основным фактом выбора является требуемая от мотора мощность. Важно также выбирать эту цифру максимально реалистично для вашего мотора. Поскольку мощность мотора зависит от количества топливо-воздушной смеси которая через него проходит за единицу времени, опредлив целевую мощность мы приступим к выбору турбины способной обеспечить необходимый для этой мощности поток воздуха.

Другим крайне важным фактором выбора турбины является скорость ее выхода на наддув и минимальные обороты двигателя на которых это происходит. Меньшая турбина или меньший горячий хаузинг позволяют улучшить эти показатели, но максимальная мощность при этом будет снижена. Тем не менее за счет большего рабочего диапазона работы двигателя и быстрого выход турбины на наддув при открытии дросселя в целом результат может быть значительно лучше, чем при использовании большей турбины с большой пиковой мощностью, но в узком верхнем диапазоне работы мотора.

Втулочные и шарикоподшипниковые турбины.
Втулочные турбины были самыми распространенными в течении долгого времени, тем не менее новые и более эффективные шарикоподшипниковые турбины используются все чаще. Шарикоподшипниковые турбины появились как результат работы Garrett Motorsport во многих гоночных сериях.
Отзывчивость турбины на дроссель очень зависит от конструкции центрального картриджа. Шарикоподшипниковые турбины Garrett обеспечивают на 15% более быстрый выход на наддув относительно их втулочных аналогов, снижая эффект турбо-ямы и приближая ощущение от турбо-мотора к атмосферному большеобъемнику.
Шарикоподшипниковые турбины так же требуют значительно меньшего потока масла через картридж для смазки пошипников. Это снижает вероятность утечек масла через сальники. Так же такие турбины менее требовательны к качеству масла и менее склонны к закоксовке после глушения двигателя.

Читать еще:  Что такое жидкая резина
Ссылка на основную публикацию
Adblock
detector